問題
長さ$N$の数列$A=(A_1,A_2,...,A_N)$が与えられます。
以下の式を計算してください。
・ $ \ \displaystyle \sum_{i=1}^{N} \displaystyle \sum_{j=i+1}^{N} A_i+A_j \ $
つまり、$i$<$j$を満たす全ての$i,j$のペアについて、$A_i+A_j$の総和を求めてください。
入力
入力は以下の形式で標準入力から与えられる。
$N$ $A_1$ $A_2$ $...$ $A_N$
1行目に整数$N$が与えられる。 2行目に数列$A$が与えられる。
出力
出力の最後に改行を入れること。
制約
全ての入出力ケースについて以下を満たす。
- $1 \leq N \leq 2×10^{5}$
- $0 \leq A_i \leq 10^{5}$
- 入力はすべて整数
入出力例
入力例1
3 1 2 3
出力例1
12
(1+2)+(1+3)+(2+3)=12です。よって、12を出力します。
入力例2
7 2007 6 20 2 3 2 6
出力例2
12276