Submission #67980


ソースコード

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#include <bits/stdc++.h>
using namespace std;
template< typename Monoid, typename F >
struct SegmentTree {
int n, sz;
vector< Monoid > seg;
const F f;
const Monoid M1;
SegmentTree(int n, const F f, const Monoid &M1) : n(n), f(f), M1(M1) {
sz = 1;
while(sz < n) sz <<= 1;
seg.assign(2 * sz, M1);
}
void set(int k, const Monoid &x) {
seg[k + sz] = x;
}
void build() {
for(int k = sz - 1; k > 0; k--) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
void update(int k, const Monoid &x) {
k += sz;
seg[k] = x;
while(k >>= 1) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
Monoid query(int a, int b) {
Monoid L = M1, R = M1;
for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if(a & 1) L = f(L, seg[a++]);
if(b & 1) R = f(seg[--b], R);
}
return f(L, R);
}
Monoid operator[](const int &k) const {
return seg[k + sz];
}
template< typename C >
int find_subtree(int a, const C &check, Monoid &M, bool type) {
while(a < sz) {
Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
if(check(nxt)) a = 2 * a + type;
else M = nxt, a = 2 * a + 1 - type;
}
return a - sz;
}
template< typename C >
int find_first(int a, const C &check) {
Monoid L = M1;
if(a <= 0) {
if(check(f(L, seg[1]))) return find_subtree(1, check, L, false);
return n;
}
int b = sz;
for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
if(a & 1) {
Monoid nxt = f(L, seg[a]);
if(check(nxt)) return find_subtree(a, check, L, false);
L = nxt;
++a;
}
}
return n;
}
template< typename C >
int find_last(int b, const C &check) {
Monoid R = M1;
if(b >= sz) {
if(check(f(seg[1], R))) return find_subtree(1, check, R, true);
return -1;
}
int a = sz;
for(b += sz; a < b; a >>= 1, b >>= 1) {
if(b & 1) {
Monoid nxt = f(seg[--b], R);
if(check(nxt)) return find_subtree(b, check, R, true);
R = nxt;
}
}
return -1;
}
};
template< typename Monoid, typename F >
SegmentTree< Monoid, F > get_segment_tree(int N, const F& f, const Monoid& M1) {
return {N, f, M1};
}
struct HeavyLightDecomposition {
public:
vector<vector<int> > g;
vector<int> sz, in, out, head, rev, par, dep;
HeavyLightDecomposition(const vector<vector<int> > &G) : g(G) {
sz.resize(g.size(), 0);
in.resize(g.size(), 0);
out.resize(g.size(), 0);
head.resize(g.size(), 0);
rev.resize(g.size(), 0);
par.resize(g.size(), 0);
dep.resize(g.size(), 0);
dfs_sz(0, -1, 0);
dfs_hld(0, -1);
}
// 頂点vからk個遡った頂点
int la(int v, int k) {
while (true) {
int u = head[v];
if (in[v] - k >= in[u]) return (rev[in[v] - k]);
k -= in[v] - in[u] + 1;
v = par[u];
}
}
int lca(int u, int v) const {
for (;; v = par[head[v]]) {
if (in[u] > in[v]) swap(u, v);
if (head[u] == head[v]) return (u);
}
}
int dist(int u, int v) const {
return (dep[u] + dep[v] - 2 * dep[lca(u, v)]);
}
template<typename E, typename F, typename G, typename S>
E query(int u, int v, const E &ti, const F &f, const G &g, const S &s, bool edge = false) {
E l = ti, r = ti;
for (;; v = par[head[v]]) {
if (in[u] > in[v]) swap(u, v), swap(l, r);
if (head[u] == head[v]) break;
l = g(f(in[head[v]], in[v] + 1), l);
}
return (s(g(f(in[u] + edge, in[v] + 1), l), r));
}
template<typename E, typename F, typename G>
E query(int u, int v, const E &ti, const F &f, const G &g, bool edge = false) {
return (query(u, v, ti, f, g, g, edge));
}
template<typename G>
void update(int u, int v, const G &g, bool edge = false) {
for (;; v = par[head[v]]) {
if (in[u] > in[v]) swap(u, v);
if (head[u] == head[v]) break;
g(in[head[v]], in[v] + 1);
}
g(in[u] + edge, in[v] + 1);
}
/* {parent, child} */
vector<pair<int, int> > compress(vector<int> &remark) {
auto comp = [&](int a, int b) { return (in[a] < in[b]); };
sort(begin(remark), end(remark), comp);
remark.erase(unique(begin(remark), end(remark)), end(remark));
int K = (int) remark.size();
for (int k = 1; k < K; ++k) remark.emplace_back(lca(remark[k - 1], remark[k]));
sort(begin(remark), end(remark), comp);
remark.erase(unique(begin(remark), end(remark)), end(remark));
vector<pair<int, int> > es;
vector<int> st;
for (auto &k : remark) {
while (!st.empty() && out[st.back()] <= in[k]) st.pop_back();
if (!st.empty()) es.emplace_back(st.back(), k);
st.emplace_back(k);
}
return (es);
}
private:
void dfs_sz(int cur, int p, int d) {
dep[cur] = d;
par[cur] = p;
sz[cur] = 1;
if (!g[cur].empty() && g[cur][0] == p) swap(g[cur][0], g[cur].back());
for (auto &to : g[cur]) {
if (to == p) continue;
dfs_sz(to, cur, d + 1);
sz[cur] += sz[to];
if (sz[g[cur][0]] < sz[to]) swap(g[cur][0], to);
}
}
void dfs_hld(int cur, int p) {
static int times = 0;
in[cur] = times++;
rev[in[cur]] = cur;
for (auto &to : g[cur]) {
if (to == p) continue;
head[to] = (g[cur][0] == to ? head[cur] : to);
dfs_hld(to, cur);
}
out[cur] = times;
}
};
struct Data {
long long par_cost;
long long left_add;
long long right_add;
long long cost;
};
int main(){
cin.tie(nullptr);
ios_base::sync_with_stdio(false);
int n, k;
cin >> n >> k;
vector<vector<int> > graph(n);
vector<tuple<int, int, int> > edges(n - 1);
map<pair<int, int>, int> def_cost;
for (auto &&[a, b, c] : edges) {
cin >> a >> b >> c;
graph[a].emplace_back(b);
graph[b].emplace_back(a);
def_cost[minmax(a, b)] = c;
}
HeavyLightDecomposition hld(graph);
auto f = [&k](Data a, Data b) {
if (a.par_cost == -1) {
return (Data{0, 0, b.right_add, a.cost + b.cost});
} else if (b.par_cost == -1) {
return (Data{a.par_cost, a.left_add, 0, a.cost + b.cost});
}
long long c = b.par_cost + a.right_add + b.left_add;
return (Data{a.par_cost, a.left_add, b.right_add, a.cost + b.cost + (c % k == 0 ? 0 : c)});
};
auto seg = get_segment_tree(n, f, Data{-1, 0, 0, 0});
for (int i = 0; i < n; ++i) {
seg.set(hld.in[i], Data{def_cost[minmax(hld.la(i, 1), i)], 0, 0, 0});
}
seg.build();
int q;
cin >> q;
for (int i = 0; i < q; ++i) {
string com;
cin >> com;
if (com == "add") {
int x, d;
cin >> x >> d;
auto data = seg[hld.in[x]];
data.left_add += d;
data.right_add += d;
seg.update(hld.in[x], data);
} else {
int s, t;
cin >> s >> t;
auto query = [&](int u, int v) {
long long sum = 0;
while (true) {
if (hld.in[u] > hld.in[v]) swap(u, v);
if (hld.head[u] == hld.head[v]) break;
int head = hld.head[v];
int par = hld.par[head];
auto head_data = seg[hld.in[head]];
auto par_data = seg[hld.in[par]];
long long cost = head_data.par_cost + head_data.left_add + par_data.right_add;
sum += seg.query(hld.in[head], hld.in[v] + 1).cost + (cost % k == 0 ? 0 : cost);
v = par;
}
return (seg.query(hld.in[u], hld.in[v] + 1).cost + sum);
};
cout << query(s, t) << '\n';
}
}
return (0);
}

ステータス

項目 データ
問題 0965 - ネットワークの課金システム
ユーザー名 ei1903
投稿日時 2021-08-05 03:23:31
言語 C++17
状態 Accepted
得点 17
ソースコード長 8765 Byte
最大実行時間 182 ms
最大メモリ使用量 40444 KB

セット

セット 得点 Cases
1 ALL 17 / 17 *

テストケース

ファイル名 状態 実行時間 メモリ使用量 #
in1.txt AC 25 ms 604 KB
1
in2.txt AC 20 ms 3280 KB
1
in3.txt AC 20 ms 3284 KB
1
in4.txt AC 24 ms 3360 KB
1
in5.txt AC 18 ms 3304 KB
1
in6.txt AC 28 ms 3240 KB
1
in7.txt AC 16 ms 3292 KB
1
in8.txt AC 24 ms 3336 KB
1
in9.txt AC 32 ms 6424 KB
1
in10.txt AC 33 ms 4016 KB
1
in11.txt AC 55 ms 11836 KB
1
in12.txt AC 132 ms 27608 KB
1
in13.txt AC 172 ms 29988 KB
1
in14.txt AC 121 ms 32188 KB
1
in15.txt AC 113 ms 30572 KB
1
in16.txt AC 124 ms 32948 KB
1
in17.txt AC 135 ms 35304 KB
1
in18.txt AC 182 ms 35848 KB
1
in19.txt AC 153 ms 32628 KB
1
in20.txt AC 130 ms 32544 KB
1
in21.txt AC 121 ms 40444 KB
1