Submission #75252


ソースコード

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <cassert>
using namespace std;
template< typename T, typename F >
struct SegmentTree {
int n, sz;
vector< T > seg;
const F f;
const T ti;
SegmentTree() = default;
explicit SegmentTree(int n, const F f, const T &ti) : n(n), f(f), ti(ti) {
sz = 1;
while(sz < n) sz <<= 1;
seg.assign(2 * sz, ti);
}
explicit SegmentTree(const vector< T > &v, const F f, const T &ti) :
SegmentTree((int) v.size(), f, ti) {
build(v);
}
void build(const vector< T > &v) {
assert(n == (int) v.size());
for(int k = 0; k < n; k++) seg[k + sz] = v[k];
for(int k = sz - 1; k > 0; k--) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
void update(int k, const T &x) {
k += sz;
seg[k] = x;
while(k >>= 1) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
T get(int k) const {
return seg[k + sz];
}
T operator[](const int &k) const {
return get(k);
}
void apply(int k, const T &x) {
k += sz;
seg[k] = f(seg[k], x);
while(k >>= 1) {
seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
}
}
T query(int l, int r) const {
T L = ti, R = ti;
for(l += sz, r += sz; l < r; l >>= 1, r >>= 1) {
if(l & 1) L = f(L, seg[l++]);
if(r & 1) R = f(seg[--r], R);
}
return f(L, R);
}
T query() const {
return seg[1];
}
template< typename C >
int find_first(int l, const C &check) const {
if(l >= n) return n;
l += sz;
T sum = ti;
do {
while((l & 1) == 0) l >>= 1;
if(check(f(sum, seg[l]))) {
while(l < sz) {
l <<= 1;
auto nxt = f(sum, seg[l]);
if(not check(nxt)) {
sum = nxt;
l++;
}
}
return l + 1 - sz;
}
sum = f(sum, seg[l++]);
} while((l & -l) != l);
return n;
}
template< typename C >
int find_last(int r, const C &check) const {
if(r <= 0) return -1;
r += sz;
T sum = ti;
do {
r--;
while(r > 1 and (r & 1)) r >>= 1;
if(check(f(seg[r], sum))) {
while(r < sz) {
r = (r << 1) + 1;
auto nxt = f(seg[r], sum);
if(not check(nxt)) {
sum = nxt;
r--;
}
}
return r - sz;
}
sum = f(seg[r], sum);
} while((r & -r) != r);
return -1;
}
};
template< typename T, typename F >
SegmentTree< T, F > get_segment_tree(int N, const F &f, const T &ti) {
return SegmentTree{N, f, ti};
}
template< typename T, typename F >
SegmentTree< T, F > get_segment_tree(const vector< T > &v, const F &f, const T &ti) {
return SegmentTree{v, f, ti};
}
struct Monoid {
int l, r, len, ans;
Monoid(int l = 0, int r = 0, int len = 0, int ans = 0) : l(l), r(r), len(len), ans(ans) {}
};
int main(){
int n, q;
string s;
cin >> n >> q >> s;
auto seg = get_segment_tree(n, [](Monoid left, Monoid right) {
int l = left.l + (left.l == left.len ? right.l : 0);
int r = right.r + (right.r == right.len ? left.r : 0);
int len = left.len + right.len;
int ans = max({left.ans, right.ans, left.r + right.l});
return Monoid(l, r, len, ans);
}, Monoid());
for (int i = 0; i < n; ++i) {
int val = s[i] == 'o';
seg.update(i, Monoid(val, val, 1, val));
}
for (int i = 0; i < q; ++i) {
int com;
cin >> com;
if (com == 1) {
int k;
cin >> k;
--k;
if (s[k] == 'o') {
seg.update(k, Monoid(0, 0, 1, 0));
s[k] = 'x';
} else {
seg.update(k, Monoid(1, 1, 1, 1));
s[k] = 'o';
}
} else {
int l, r;
cin >> l >> r;
--l, --r;
cout << seg.query(l, r + 1).ans << '\n';
}
}
return (0);
}

ステータス

項目 データ
問題 1663 - All you need is Segment Tree.
ユーザー名 ei1903
投稿日時 2023-08-26 11:33:39
言語 C++17
状態 Accepted
得点 5
ソースコード長 4621 Byte
最大実行時間 525 ms
最大メモリ使用量 14260 KB

セット

セット 得点 Cases
1 ALL 5 / 5 *

テストケース

ファイル名 状態 実行時間 メモリ使用量 #
00_sample_00.in AC 26 ms 604 KB
1
01_small_00.in AC 20 ms 580 KB
1
01_small_01.in AC 20 ms 424 KB
1
01_small_02.in AC 15 ms 396 KB
1
01_small_03.in AC 19 ms 368 KB
1
02_corner_minimum_00.in AC 21 ms 464 KB
1
02_corner_minimum_01.in AC 19 ms 560 KB
1
03_general_00.in AC 22 ms 532 KB
1
03_general_01.in AC 32 ms 636 KB
1
04_random_00.in AC 25 ms 608 KB
1
04_random_01.in AC 16 ms 580 KB
1
04_random_02.in AC 20 ms 540 KB
1
04_random_03.in AC 29 ms 508 KB
1
05_large_00.in AC 18 ms 460 KB
1
05_large_01.in AC 22 ms 416 KB
1
05_large_02.in AC 28 ms 612 KB
1
05_large_03.in AC 32 ms 824 KB
1
06_corner_maximum_00.in AC 316 ms 9372 KB
1
06_corner_maximum_01.in AC 519 ms 9932 KB
1
06_corner_maximum_02.in AC 519 ms 11124 KB
1
06_corner_maximum_03.in AC 525 ms 11552 KB
1
06_corner_maximum_04.in AC 251 ms 3136 KB
1
07_corner_critical_00.in AC 479 ms 12208 KB
1
07_corner_critical_01.in AC 309 ms 12512 KB
1
07_corner_critical_02.in AC 309 ms 12932 KB
1
07_corner_critical_03.in AC 313 ms 13232 KB
1
07_corner_critical_04.in AC 330 ms 13532 KB
1
07_corner_critical_05.in AC 503 ms 13832 KB
1
07_corner_critical_06.in AC 510 ms 14260 KB
1