Submission #00171


ソースコード

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#include <iostream>
#include <vector>
#include <algorithm>
#include <map>
constexpr int MOD = 1e9 + 7;
struct modint {
int n;
modint(int n = 0) : n(n) {}
};
modint operator+(modint a, modint b) { return modint((a.n += b.n) >= MOD ? a.n - MOD : a.n); }
modint operator-(modint a, modint b) { return modint((a.n -= b.n) < 0 ? a.n + MOD : a.n); }
modint operator*(modint a, modint b) { return modint(1LL * a.n * b.n % MOD); }
modint &operator+=(modint &a, modint b) { return a = a + b; }
modint &operator-=(modint &a, modint b) { return a = a - b; }
modint &operator*=(modint &a, modint b) { return a = a * b; }
class Combination {
public:
Combination() {
inv.push_back(0);
inv.push_back(1);
f.push_back(1);
f.push_back(1);
invf.push_back(1);
invf.push_back(1);
}
modint F(int n) {
check(n);
return f[n];
}
modint IF(int n) {
check(n);
return invf[n];
}
modint inverse(int n) {
check(n);
return inv[n];
}
modint P(int n, int r) {
if (n < 0 || r < 0 || n < r) {
return 0;
}
check(n);
return f[n] * invf[n - r];
}
modint C(int n, int r) {
if (n < 0 || r < 0 || n < r) {
return 0;
}
check(n);
return f[n] * invf[r] * invf[n - r];
}
modint H(int n, int r) {
if (n == 0 && r == 0) {
return 1;
}
return C(n + r - 1, r);
}
private:
std::vector<modint> inv;
std::vector<modint> f;
std::vector<modint> invf;
void check(int k) {
if (k < inv.size()) {
return;
}
int p = inv.size() - 1;
inv.resize(k + 1);
f.resize(k + 1);
invf.resize(k + 1);
for (int i = p + 1; i <= k; i++) {
inv[i] = inv[MOD % i] * (MOD - MOD / i);
f[i] = i * f[i - 1];
invf[i] = inv[i] * invf[i - 1];
}
}
};
template<typename T>
modint modpow(modint a, T b) {
modint ret = 1;
while (b > 0) {
if (b & 1) {
ret *= a;
}
a *= a;
b /= 2;
}
return ret;
}
template<typename T>
modint modpowsum(modint a, T b) {
if (b == 0) return 0;
if (b % 2 == 1) return modpowsum(a, b - 1) * a + 1;
return modpowsum(a, b / 2) * (modpow(a, b / 2) + 1);
}
int main() {
int n;
std::cin >> n;
std::vector<std::map<int, int>> num(10);
bool only_zero = true;
bool over_one = false;
bool has_zero = false;
for (int i = 0; i < n; i++) {
int a, b;
scanf("%d %d", &a, &b);
num[a][b]++;
if (a == 0) has_zero = true;
if (a != 0) {
only_zero = false;
} else if (b >= 2) {
over_one = true;
}
}
if (only_zero) {
if (over_one) {
puts("0");
} else {
puts("1");
}
return 0;
}
modint ans = 1;
Combination comb;
modint min = 0;
int ok0 = -1;
if (has_zero) {
for (int i = 1; i <= 9; i++) {
if (num[i].empty()) continue;
auto it = num[i].begin();
int total = 0;
for (auto kv : num[i]) {
total += kv.second;
}
ans *= it->second * comb.F(total - 1);
min = i * modpowsum(10, it->first);
it->second--;
ok0 = i;
break;
}
}
for (int i = 0; i <= 9; i++) {
int total = 0;
long long len = 0;
for (auto kv : num[i]) {
len += 1LL * kv.first * kv.second;
total += kv.second;
}
min = min * modpow(10, len) + i * modpowsum(10, len);
if (ok0 == i) continue;
ans *= comb.F(total);
}
std::cout << min.n << std::endl;
std::cout << ans.n << std::endl;
}

ステータス

項目 データ
問題 0003 - repdigit
ユーザー名 pekempey
投稿日時 2017-07-07 21:37:20
言語 C++11
状態 Wrong Answer
得点 0
ソースコード長 3377 Byte
最大実行時間 65 ms
最大メモリ使用量 6480 KB

セット

セット 得点 Cases
1 ALL 0 / 100 *

テストケース

ファイル名 状態 実行時間 メモリ使用量 #
01_sample1.in AC 12 ms 480 KB
1
01_sample2.in AC 11 ms 456 KB
1
01_sample3.in WA 10 ms 428 KB
1
02_handmake1.in AC 19 ms 528 KB
1
02_handmake2.in AC 13 ms 372 KB
1
02_handmake3.in AC 17 ms 476 KB
1
02_handmake4.in AC 11 ms 580 KB
1
02_handmake5.in AC 10 ms 556 KB
1
02_handmake6.in AC 10 ms 528 KB
1
02_handmake7.in AC 11 ms 504 KB
1
02_handmake8.in AC 12 ms 480 KB
1
02_handmake9.in AC 13 ms 580 KB
1
03_random1.in AC 13 ms 556 KB
1
03_random2.in AC 12 ms 528 KB
1
03_random3.in AC 10 ms 500 KB
1
03_random4.in AC 11 ms 600 KB
1
03_random5.in AC 13 ms 440 KB
1
03_random6.in AC 14 ms 416 KB
1
04_random1.in AC 12 ms 384 KB
1
04_random2.in AC 12 ms 600 KB
1
04_random3.in AC 12 ms 572 KB
1
04_random4.in AC 11 ms 664 KB
1
04_random5.in AC 11 ms 628 KB
1
04_random6.in AC 17 ms 720 KB
1
05_random1.in AC 53 ms 5552 KB
1
05_random2.in AC 54 ms 5624 KB
1
05_random3.in AC 62 ms 5568 KB
1
05_random4.in AC 55 ms 5636 KB
1
06_random1.in AC 65 ms 6480 KB
1
06_random3.in AC 54 ms 5456 KB
1